Форум Tolkien.SU

Архив => Архив => Тема начата: Нолеквен от 20/11/2002, 14:57:24

Название: Термины и другие непонятные слова
Отправлено: Нолеквен от 20/11/2002, 14:57:24
Модераторская группа просит всех диспутирующих на этом форуме описывать в этой теме употребляемые вами слова (значение которых может быть неизвестно вашим собеседникам), научные термины, фразы, используемые без перевода и т.п. Каждый имеет право создать только одно сообщение (для его обновления используйте функцию "правка").
Также, любой может задать вопрос относительно неизвестного ему слова (фразы), с которым(ой) он столкнулся на нашем форуме.

Все вопросы и предложения относительно этого треда прошу писать в теме "Задушевные беседы с модераторами" (http://forum.tolkien.ru/index.php?board=21;action=display;threadid=2358)





               

               
Название: Re:Термины и другие непонятные слова
Отправлено: Нолеквен от 23/11/2002, 10:08:18
* Ссылка на сокращения (http://smaylik.by.ru/sokr.htm)  (типа "IMHO" или "АКА")

               

               
Название: Re:Термины и другие непонятные слова
Отправлено: Feanor от 05/12/2002, 06:46:24
  Handicap, n - 1. A contest in which artificial advantage is given or disadvantage imposed on a contestant to equalize chances of winning; also: the advantage is given or disadvantage imposed. 2. A disadvantage that makes achievement difficult.
The Merriam-Webster Dictionary
  Handicapped
В принципе, означает еще и человека, у которого есть инвалидность. Синоним этому значению - disabled. Употребляется обычно в американской форме английского языка.
  Гандикап в гонках Формулы 1...
Вообще, в русском языке я слово "гандикап" встречал только применительно к последним изменениям в регламенте гонок Формулы 1 ("гонки с гандикапом"). Там оно означало именно то, что и в словаре - искусственные ограничения на машины и работу команды, с целью затруднить соревнования и уравнять шансы соперников.
                                   
Feanor

  Гандикап в гольфе...
Есть поле (18 лунок). Но, поскольку каждое поле индивидуально, на каждом поле есть свой минимум ударов по мячу, в который надо уложиться для прохождения всех 18 лунок. Причем этот минимум делится по лункам (обычно 3-6 ударов на лунку). То есть, к примеру, 1ая лунка - 3 удара, 2ая - 5 ударов, 3ая - снова 3 удара, 4ая - 4 удара и т. д.
Ну а "гандикап", соответственно, это разница между твоим количеством ударов и нормой. То есть если норма для 5ой лунки 4 удара, а я прошел ее за 6, то мой гандикап на 5ой лунке - 2.
                           
Kidd 79ый


Термин "гандикап" широко применяется также в скачках.
Valandil


               

               
Название: Re:Термины и другие непонятные слова
Отправлено: Снорри от 15/12/2002, 20:55:14
Респект (тж. "решпект", тж. "респекты") - от англ. "respect" - "уважение", "уважать". В компьютерной тусовке (начиная со времен ФИДО, а может, и раньше) обозначает, как правило, искренне восхищение словами/действиями адресата, граничащее с глубоким уважением.
Если не выпендриваться, то означает это то, что и должно - выражение уважения к тому, кому говорится.


               

               
Название: Re:Термины и другие непонятные слова
Отправлено: Мунин от 30/12/2002, 21:58:31
Лопиталить/лопитировать - раскрывать неопределенность 0/0 или оо/оо по правилу Лопиталя. Смысл в слледующем: если предел дроби f(x)/g(x) при подстановке x=xlim является одной из этих неопределенностей, то можно вместо самих функций использовать их производные - значение предела будет то же. Причем, что замечательно, метод можно повторять несколько раз: если после первого лопитирования опять получается 0/0, то лопиталим второй раз, третий, четвертый...

Пример применения:
Ну, например (я издеваюсь, да...), надо взять предел limx->0 (sin x)/x. Как ты это будешь делать? Если подставить сразу 0, то получится неопределенность. Но и числитель, и знаменатель - функции в нуле дифференцируемые. Найдя их производные, по правилу Лопиталя можно сказать, что искомый предел равен limx->0 (sin x)'/x'=limx->0 (cos x)/1. А здесь уже можно подставлять x=0, и все хорошо получится.

               

               
Название: uncertainty
Отправлено: Onkija от 21/01/2003, 10:04:30
uncertainty = неопределённость. Принцип неопределённости - следствие  природы частиц, заключается в том, что чем точнее частица локализована в пространстве, тем менее определён её момент. Предел, определяемый этой неопределённостью (хорошо сказал, правда?), выводится из функции вероятности и равен половине постоянной Планка (квант действия).

Принцип непределённости связывает между собой координату и импульс (или время и энергию). И поэтому в него множителем входит масса. Чем больше масса - тем неопределённость меньше. Для элементарных частиц неопределённость весьма заметна (локализовать электрон в атоме водорода - безнадёжное занятие). Для ядер атомов (и соответственно, для самих атомов) уже можно говорить о положении (отклонение от положения равновесия в кристаллической решётке не превышает процентов). А для слонов, например, неопределённость положения настолько мала, что её не измеришь.  (Му-нин)

"Наблюдение" частицы - суть взаимодействие её с чем угодно. Таким образом, локализуем мы (или, например, другая частица) не частицу, а СОБЫТИЕ. Трудно понять, где находится событие до того, как оно произошло.

Кошка Шрёдингера: Когда происходит событие (распад или не распад атома), происходит его измерение всяким счётчиком Гейгера (или чем там - неважно). И вот в этот момент уничтожается квантовая неопределённость, и возникает макроопределённость. Соответственно, кошка подыхает либо нет. А то, что об этом не знает физик снаружи ящика - это всего лишь вопрос неосведомлённости физика о результатах эксперимента. Как если бы сейсмограф нарисовал график землетрясения, но никто ещё его не посмотрел. Заявлять, что пока никто его не видел, графика еще нет - это значит, уходить в глубокий субъективизм, кончающийся солипсизмом. (Му-нин)


               

               
Название: Re:Термины и другие непонятные слова
Отправлено: Панджшерский Лев от 09/10/2003, 05:01:27

Цитата из: Mellon on 03-10-2003, 16:18:20

Цитата из: Светлая on 08-04-2003, 15:58:01
... А я являюсь безусловным противником космополитизма. ИМХО.

Почему, если не секрет? Определение дай, плиз. :)



Космополитизм - (от греч. kosmopolites - космополит, гражданин мира), идеология так называемого "мирового гражданства", проповедующая отказ от национальных традиций и культуры, патриотизма, отрицающая государственный и национальный суверенитет; призывающая к объединению всех государств в единую конфедерацию с одним языком и общими законами.

               

               
Название: Re:Термины и другие непонятные слова
Отправлено: Bindaree от 18/11/2003, 14:29:37
Любимые слова:

Оппортунизм - преследование собственных интересов с использованием коварства.
... на практике означает ситуацию, когда человек ведет себя нечестно, непорядочно, в ущерб интересам других людей пользуясь тем, что его нельзя проконтролировать или тем, что какие-то его действия напрямую не оговорены, но подразумеваются...

Институт - "правило игры" в обществе.
... фактически понятие применимо практически к любому социальному образованию - от фирмы до морали...

Glossary им. Лапочки

Эффективность распределения ресурсов (аллокативная экономическая эффективность) - характеристика такого состояния рынка (эконмики), при котором общество извлекает максимум полезности из имеющихся ресурсов и технологий. По Паретто признак эффективности: невозможно увеличить чью-либо долю в полученном результате, не сократив другую (можно включить этот признак в определение через запятую   :)).

Ответственность - обязанность и готовность субъекта отвечать за совершенные действия, поступки и их последствия. В данном случае под ответственностью за решения понимается, что люди несут все выгоды и издержки, связанные с принятым ими решением.

Собственность - это свобода (право) индивида выбирать для некоторого объекта любое использование из разрешенного (т.е. незапрещенного) класса использований (дано по Алчиану... единого определения собственности вообще не существует...)

Определенность прав собственности - состояние, когда права собственности определены то есть ясно, что кому принадлежит и кто за что несет ответственность.
Например, Вы едите на корпоративной кухне бутерброд с кензой. Кенза пахнет на всю кухню. К Вам подходит коллега Паша и говорит "Уважаемый Мунин, не будете ли Вы любезны есть бутерброд в другом месте - я от кензы чихаю". Если права собственности определены полностью, то известно, кому принадлежит воздух на корпоративной кухне. Если Вам, Вы радостно сообщаете Паше, что он не прав... Если Паше, Вы ретируетесь с кухни (или пытаетесь выкупить у Паши право есть там бутерброд, скажем, за поллитра газировки "Колокольчик").

Внешние эффекты - Ваша собственнось может приносить выгоды\издержки не только Вам, но и другим людям. Влияние, которое Ваша собственность или Ваше использование Вашей собственности оказывает на других людей независимо от Вашего желания есть внешний эффект...
например, Вы имеете поршик... поршик припаркован во дворе... каждое утро соседка Маша проходит мимо Вашего поршика и у нее улучшается настроение (нравится он ей или она радуется, что у нее феррари с гораздо более удобными сиденьями - не суть)... влияние вашего поршика на соседку Машу и есть внешний эффект

Интернализуются - становятся внутренними... так, после того, как Ваша собака напугала соседскую кошку, Вы заплатили хозяевам за лечение кошки - внешний эффект от вашей собственности "собака" интернализовался: эффект для соседей равен нулю (кошка напугана, но вылечена, моральный ущерб компенсирован), для Вас "собака" стала источником расходов...



               

               
Название: Re:Термины и другие непонятные слова
Отправлено: Гайка от 21/11/2003, 12:19:29
Лытдыбр (он же lytdybr) - дневник
Лабысло - ищу значение, подскажите чтоль ;)

               

               
Название: Re:Термины и другие непонятные слова
Отправлено: insanity от 21/02/2004, 14:23:18

Цитата из: Gaio on 21-11-2003, 12:19:29
Лабысло - ищу значение, подскажите чтоль ;)


Лабысло = Солнце

               

               
Название: Re:Термины и другие непонятные слова
Отправлено: Мёнин от 10/03/2004, 07:40:42
Лабысло - специально созданное магическое "солнышко" с зубастым оскалом, двигающееся по небу над одной из стран мира Хоманы (см. Макс Фрай: "Гнёзда Химер")

Слова "уладас", "камра" и некоторые другие происхождения также Фрая, но также встречаются на практике нечасто.

Кто может дать объяснение слову Энтропия?

               

               
Название: Re:Термины и другие непонятные слова
Отправлено: Brunhilda от 16/03/2004, 15:49:16
a yandex его знает :)

ЭНТРОПИЯ — (физич.), «величина, характеризующая тепловое состояние тела (или системы тел). С молекулярно-кинетической точки зрения энтропия — мера вероятности осуществления данного состояния системы: состояние с большей энтропией более вероятно. Напр., распределение газа в сосуде с равномерной плотностью более вероятно, чем концентрация газа в одной части сосуда. Соответственно, энтропия газа в первом из указанных состояний больше, чем во втором. При всех процессах, совершающихся в замкнутых системах, энтропия или возрастает (необратимые процессы), или остается постоянной (обратимые процессы).» Энциклопедический словарь, т. 2, М., 1964).  

http://svitlo.by.ru/bibloteka/nauch/nauch9.htm (http://svitlo.by.ru/bibloteka/nauch/nauch9.htm)

Билл: Энтропия определяется как мера связанной энергии замкнутой термодинамической системы, и изменение этой меры равно отношению количества поглощенной теплоты к абсолютной температуре, при которой эта теплота была поглощена.

Скотт: Кто это сказал, какой-нибудь "безумный" ученый или кто-нибудь еще?

Билл: Нет, это взято из словаря Вебстера!

Скотт: Вариант определения энтропии, найденный в этом словаре, применим и к нашей сетевой проблеме: энтропия - это мера количества информации в сообщении, которая пропорциональна логарифму числа возможных эквивалентных сообщений.


http://www.ccc.ru/magazine/depot/96_04/read.html?0103.htm (http://www.ccc.ru/magazine/depot/96_04/read.html?0103.htm)

фотт...


               

               
Название: Re:Термины и другие непонятные слова
Отправлено: Вечер от 18/03/2004, 19:41:13
У слова "энтропия" есть еще и бытовое значение: потеря контроля над собственной повседневной жизнью.

               

               
Название: Re:Термины и другие непонятные слова
Отправлено: svensven от 19/03/2004, 09:50:00
 Так же бытовое - " разрушение равновесия, саморазрушение" ( энтропийные процессы, предотвращение энтропии)
 В каждой почти науке- собственное определение, что забавно. :)
 Но в общем-мера неупорядоченноти, хаотичности.

               

               
Название: Re:Термины и другие непонятные слова
Отправлено: Вечер от 19/03/2004, 16:38:15
Для моего определения скорее "тяготение к..."

               

               
Название: Re: Термины и другие непонятные слова
Отправлено: Tutus от 26/04/2005, 12:48:20
Лучшие два термина, на мой взгляд. Но значения не знаю.
№1 - "менталитет". Что это за мент?
№2 - "историческая справедливость".

               

               
Название: Re: Термины и другие непонятные слова
Отправлено: Шана от 27/04/2005, 14:34:43
МЕНТАЛИТЕТ (ментальность) (от позднелат. mentalis - умственный), образ мыслей, совокупность умственных навыков и духовных установок, присущих отдельному человеку или общественной группе.

               

               
Название: Re: Термины и другие непонятные слова
Отправлено: El Diablo от 26/05/2005, 20:51:57

Цитата:
Ну, например (я издеваюсь, да...), надо взять предел limx->0 (sin x)/x. Как ты это будешь делать? Если подставить сразу 0, то получится неопределенность. Но и числитель, и знаменатель - функции в нуле дифференцируемые. Найдя их производные, по правилу Лопиталя можно сказать, что искомый предел равен limx->0 (sin x)'/x'=limx->0 (cos x)/1. А здесь уже можно подставлять x=0, и все хорошо получится.

Насколько я помню курс 10 класса,lim x->0 (sin x)/x=1 и называется "замечательным" пределом,
хотя что в нем замечательного я не понимаю!

               

               
Название: Re: Термины и другие непонятные слова
Отправлено: Снорри от 26/05/2005, 22:20:26
Мантисса (от лат. mantissa - прибавка) - дробная часть десятичного логарифма.
(с) (http://encycl.yandex.ru/cgi-bin/art.pl?art=bse/00045/41200.htm&encpage=bse&mrkp=http://hghltd.yandex.com/yandbtm%3Furl%3Dhttp://encycl.yandex.ru/texts/bse/00045/41200.htm%26text%3D%25EC%25E0%25ED%25F2%25E8%25F1%25F1%25E0%26reqtext%3D%2528%25EC%25E0%25ED%25F2%25E8%25F1%25F1%25E0::2063133498%2B%253C%253C%2B%2528%2528%2529:0%2B%257C%2B%2528%2529:0%2B%257C%2B%2528%2529:0%2B%257C%2B%2528%2529:0%2B%257C%2B%2528%2529:0%2B%257C%2B%2528%2529:0%2B%257C%2B%2528%2529:0%2B%257C%2B%2528%2529:0%2B%257C%2B%2528%2529:0%2B%257C%2B%2528%2529:0%2B%257C%2B%2528%2529:0%2B%257C%2B%2528%2529:0%2B%257C%2B%2528%2529:0%2B%257C%2B%2528%2529:0%2B%257C%2B%2528%2529:0%2B%257C%2B%2528%2529:0%2B%257C%2B%2528%2529:0%2B%257C%2B%2528%2529:0%2B%257C%2B%2528%2529:0%2529:0%2529//6%26%26isu%3D2)

               

               
Название: Re: Термины и другие непонятные слова
Отправлено: Panterra от 01/06/2005, 17:45:35

Цитата из: El Diablo on 26-05-2005, 20:51:57
lim x->0 (sin x)/x=1 и называется "замечательным" пределом,
хотя что в нем замечательного я не понимаю!


Это же так замечательно, вы только подумайте!, при том что какой-то там икс стремится к нулю, дробь равна ни чему -нибудь, ни нулю, ни 20, ни 153, а самой что ни на есть единице!!!!
Моему восхищению нет предела. Жаль что его не назвали "просто потрясающий предел"

               

               
Название: Re: Термины и другие непонятные слова
Отправлено: El Diablo от 01/06/2005, 20:29:53
Да,но "замечательным" назван не только sin x/ x,также Ln(x+1)/x ,(1+1/n) в степени n   и.т.д!

               

               
Название: Re: Термины и другие непонятные слова
Отправлено: Снорри от 09/06/2005, 13:28:58
Цимес

1. Цимес из моркови, яблок и изюма (http://eda.upmark.ru/recept-1049/)
Цитата:
- морковь - 8-10 шт.
- изюм (без косточек) - 1 стакан
- яблоки кислые - 2 шт.
- масло сливочное - 3 ст. л.
- сахар - 2 ст. л.
- соль - 1/3 ч. л.


Морковь вымыть, очистить и мелко нарезать соломкой, кубиками или кружочками. Поместить в сотейник, немного посолить, добавить ложку масла, немного воды и поставить на огонь. Когда вода закипит, огонь убавить и тушить под крышкой до мягкости.

Изюм перебрать, хорошо промыть, яблоки очистить от кожуры и нарезать мелкими кусочками и добавить к моркови. Приправить добавив 2 ст. л. сахара и 2 л. сливочного масла. Перемешать и подержать на огне еще минут 15. В сотейнике с морковью вода должна вся выпариться.

Блюдо подавать в горячем виде. При желании можно полить сметаной.


2. Цимес картофельный c черносливом (http://eda.upmark.ru/recept-1044/page-25/index.html)
Цитата:
- картофель - 200-225г
- изюм без косточек (коринка или кишмиш) - 20-25г
- чернослив - 15г
- сливочное масло - 10г
- пшеничная мука - 5г
- сахар - 5г
- корица
- соль

Картофель нарезать небольшими ломтиками. Промыть чернослив и вынуть из него косточки. Промыть изюм. Залить картофель небольшим количеством теплой воды, довести до кипения на небольшом огне и тушить под крышкой на слабом огне. За 10-15 минут до окончания ввести чернослив, изюм и муку, предварительно подсушенную на сковороде и разведенную столовой ложкой горячей воды. Через 5 минут добавить сахар, масло, соль, корицу и все перемешать. Подержать снятую с огня кастрюлю с закрытой крышкой 10-15 минут. И цимес готов!


               

               
Название: Re: Термины и другие непонятные слова
Отправлено: Хифион от 14/06/2005, 16:02:00
Симулякр (http://www.livejournal.com/community/pishu_pravilno/400039.html?thread=4611495#t4611495).

               

               
Название: Re: Термины и другие непонятные слова
Отправлено: Mrrl от 06/09/2005, 00:04:08
Тензор (http://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BD%D0%B7%D0%BE%D1%80) - полилинейная функция от нескольких векторов и ковекторов. В частном случае тензора ранга (0,2) получается билинейная форма. То есть, функция от двух векторов F(a,b), для которой выполняются условия:
F(r*a,b)=F(a,r*b)=r*F(a,b), где r - вещественное число
F(a+c,b)=F(a,b)+F(c,b)
F(a,b+c)=F(a,b)+F(a,c)

Метрический тензор (http://www.booksite.ru/fulltext/1/001/008/076/063.htm) задает способ определения длины вектора.

Метрика пространства-времени (http://www.booksite.ru/fulltext/1/001/008/076/056.htm) - частный случай метрического тензора. Если его понимать буквально, то все расстояния в нашем пространстве окажутся чисто мнимыми. Впрочем, физиков это не останавливает.





               

               
Название: Re:Термины и другие непонятные слова
Отправлено: Панджшерский Лев от 18/11/2005, 00:41:13

Цитата из: Нолеквен on 23-11-2002, 10:08:18
* Ссылка на сокращения (http://smaylik.by.ru/sokr.htm)  (типа "IMHO" или "АКА")



Ссылка больше не работает. Кто может создать подобную страничку на постоянном месте?

               

               
Название: Re:Термины и другие непонятные слова
Отправлено: Снорри от 18/11/2005, 15:52:22

Цитата из: Панджшерский Лев on 18-11-2005, 00:41:13

Цитата из: Нолеквен on 23-11-2002, 10:08:18
* Ссылка на сокращения (http://smaylik.by.ru/sokr.htm)  (типа "IMHO" или "АКА")
Ссылка больше не работает. Кто может создать подобную страничку на постоянном месте?
Да запросто (http://www.yandex.ru/yandsearch?text=IMHO+AKA+BRB+FYI+ASAP+CU+FAQ+ROTFLMAO&stype=www).

               

               
Название: Re: Термины и другие непонятные слова
Отправлено: Митрандир от 27/02/2006, 15:56:54
Корпускулярно-волновая теория света

заключается в том, что любые микрочастицы материи (фотоны, электроны, протоны, атомы и др.) обладают свойствами и частиц (корпускул), и волн. Количественное выражение корпускулярно-волнового дуализма — соотношения де Бройля

Можно применять выражение и в повседневной жизни. Тогда оно обозначает нечто единое, но в 2-х ипостасях.

               

               
Название: Re: Термины и другие непонятные слова
Отправлено: Арвинд от 28/03/2006, 22:01:49
Множество (элементов) - неопределяемое понятие, которое поясняется только через синонимы - совокупность, набор элементов. В математике рассматривают множества каких-то математических объектов - чисел, точек какого-то пространства, функций, фигур. Как правило, отнесение объектов в определенное множество производится с помощью "характеристического свойства" - т.е. рассматриваются объекты, удовлетворяющие определенному условию (следовательно, обладающие определенным свойством).
Ответить на вопрос, какие свойства действительно определяют множества, а какие внутренне противоречивы (или попросту бессмысленны) - довольно сложно, особенно если изначальные объекты никак не фиксируются. В математических теориях такая ситуация запрещена - всегда есть набор базовых объектов, из которых формируются множества. Множества могут, в свою очередь, рассматриваться как элементы других множеств (дальше ищите в интернете "парадокс Рассела" и "теория типов").

Мощность множества - обобщение понятия натурального числа. Если у нас есть два множества, в каждом из которых по N элементов, то N - некая общая характеристика этих двух множеств. Можно выразиться и по-другому - эти два множества входят в некий класс "множеств мощности N" (такие классы не рассматриваются как множества, т.к. нет никаких возможностей обозреть "все множества из пяти элементов").
Мощность - абстрактная характеристика множества, которую невозможно определить ничем иным, кроме как сопоставлением данного множества с другим, мощность которого нам уже известна. В частности, процедура подсчета элементов в конечном множестве - это последовательное сопоставление нашего множества с эталоном: {}; {1}; {1, 2}; {1; 2; 3} и т.д. (реально эталон строится чуть сложнее).
На каждом шаге мы сопоставляем один элемент рассматриваемого множества с одним (следующим) числом из натурального ряда, и как только наши элементы кончаются, мы готовы объявить результаты подсчета.
Итак, два множества называются равномощными, если между их элементами можно установить взаимно однозначное соответствие.

Счетная мощность. В теории рассматриваются и бесконечные множества. Стандартным образцом служит натуральный ряд. Множество, равномощное натуральному ряду, называется счетным. Это название проистекает из того, что по определению у нас есть способ пересчитать все элементы этого множества - для каждого элемента множества теоретически возможно указать вполне определенный его номер (хотя всего элементов, как и в натуральном ряду, бесконечное число). Простые примеры счетных множеств: множество всех простых чисел, множество всех четных чисел, множество чисел - степенй двойки. Легко доказывается, что счетными являются также множество всех целых чисел и множество всех рациональных чисел, а также множество всех алгебраических чисел (определение последнего найдете в интернете).

Континуум. Если бесконечное множество не является счетным, то оно называется (сюрприз!) несчетным. Все несчетные мощности больше счетной, т.е. счетные множества - самые маленькие среди бесконечных. Первый пример несчетного множества - это множество всех действительных чисел (или множество бесконечных последовательностей цифр). Несчетность этого множества доказывается с помощью канторовского диагонального процесса. Мощность данного множества и называется мощностью континуума.
Доказано, что мощность континуум имеет не только прямая, но и любой интервал, любой отрезок, а также - любое конечное декартово произведение таких множеств (в частности, квадрат, куб, любые другие элементарные фигуры на плоскости и в пространстве).

Существуют множества мощностей и более высоких, чем континуум. Например, гиперконтинуум - множество, скажем, всех функций, принимающих значений 0 и 1 на отрезке [0, 1]. Вообще, по этому принципу для любой наперед заданной мощности можно указать мощность еще больше.

Тут еще есть такие термины, как трансфинитные числа и счетные ординалы... Идея там в том, что кроме "количества элементов" может быть еще важен их порядок. Скажем, бесконечное число элементов может так соотноситься с введенным на этом множестве порядком, что эти элементы можно будет считать до бесконечности не один, а несколько раз. Подробнее не буду - см. http://bse.chemport.ru/transfinitnye_chisla.shtml или найдете в сети что-нибудь поинформативнее.

Множества промежуточной мощности. Попросту говоря, это множества, мощность которых больше счетной, но меньше континуума.

континуум-гипотеза Кантора гласит: множеств промежуточной мощности не существует.

               

               
Название: Re: Термины и другие непонятные слова
Отправлено: Снорри от 03/04/2006, 16:55:40
Добавлю найденное мной, может, кому будет полезно:

Аксиоматика теории множеств (http://ru.wikipedia.org/wiki/%D0%90%D0%BA%D1%81%D0%B8%D0%BE%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D0%B8_%D0%BC%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2)

Там внутри есть перекрестные ссыилки и на Рассела, и на Геделя, и на Кантора, и на ZFС, и воообще много на что.

Даже на вот ЭТО (http://ru.wikipedia.org/wiki/%D0%9F%D0%B0%D1%80%D0%B0%D0%B4%D0%BE%D0%BA%D1%81_%D0%91%D0%B0%D0%BD%D0%B0%D1%85%D0%B0%E2%80%94%D0%A2%D0%B0%D1%80%D1%81%D0%BA%D0%BE%D0%B3%D0%BE).

Злостный оффтопик
Цитата:
элементы можно будет считать до бесконечности не один, а несколько раз.
Чак Норрис досчитал до бесконечности. Дважды. (с)

               

               
Название: Re: Термины и другие непонятные слова
Отправлено: Ethillen от 25/04/2006, 21:57:42
Анатомия - группа научных отраслей, исследующих форму и строение отдельных органов, их систем и всего организма в целом. Обычно анатомия входит в состав морфологии. Различают анатомию человека, анатомию животных и анатомию растений.

(для темы на Кубе :))